Prediction of Unsteady Forced Convection over Square Cylinder in the Presence of Nanofluid by Using ANN
نویسندگان
چکیده
Abstract—Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nanoparticles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.
منابع مشابه
Prediction of Unsteady Mixed Convection over Circular Cylinder in the Presence of Nanofluid- a Comparative Study of Ann and Gep
Heat transfer due to forced convection of copper water based nanofluid in the presence of buoyancy has been predicted by the Artificial Neural network (ANN) and Gene Expression Programming (GEP). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number (Re) are varying from 80 to 180. The adding a...
متن کاملConjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media
In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimen...
متن کاملNumerical study of turbulent forced convection jet flow of nanofluid in a converging sinusoidal channel
Research in convective heat transfer using suspensions of nanometer-sized solid particles in base liquids started only over the past decade. Recent investigations on nanofluid, as such suspensions are often called, indicate that the suspended nanoparticles remarkably change the transport properties and heat transfer characteristics of the suspension. Bending walls can also improve heat transfer...
متن کاملNumerical study of turbulent forced convection jet flow of nanofluid in a converging sinusoidal channel
Research in convective heat transfer using suspensions of nanometer-sized solid particles in base liquids started only over the past decade. Recent investigations on nanofluid, as such suspensions are often called, indicate that the suspended nanoparticles remarkably change the transport properties and heat transfer characteristics of the suspension. Bending walls can also improve heat transfer...
متن کاملNumerical investigation on the effects of six control rods arranged in equilateral triangular configurations on fluid flow and forced convection heat transfer from a circular cylinder
The present work deals with heat transfer characteristics as well as fluid flow patterns in laminar flow regime for a circular cylinder with six control rods arranged in equilateral triangular geometries. The computations have been carried out by a finite volume approach using the overset grid method. The unsteady flow at Re= 200 and Pr= 0.7 and 7.0 was examined. The effect of the control rods ...
متن کامل